博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 404 字,大约阅读时间需要 1 分钟。

矩阵A满足A + A^T = I,证明其可逆性

矩阵A满足A + A^T = I,我们需要证明A是可逆的。


证明一:反证法

假设A不可逆,那么根据矩阵的理论,存在至少一个非零矩阵x0,使得Ax0 = 0。

考虑x0^T A x0,展开得到:x0^T A x0 = x0^T (A + A^T) x0

由于A + A^T = I,代入得到:x0^T A x0 = x0^T I x0 = x0^T x0

另一方面,展开x0^T A x0,考虑到Ax0 = 0,A^T x0 = (Ax0)^T = 0^T = 0,因此:x0^T A x0 = x0^T 0 = 0

于是得到:x0^T x0 = 0

这意味着x0是一个幂等矩阵且为零矩阵。但这与我们的假设矛盾,因为x0是非零矩阵。这就说明A必须是可逆的。


结论

通过反证法,我们发现矩阵A必须是可逆的,以满足A + A^T = I的条件。因此,A是可逆的矩阵。

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
OLEDB IMEX行数限制的问题
查看>>
ollama 如何删除本地模型文件?
查看>>
ollama-python-Python快速部署Llama 3等大型语言模型最简单方法
查看>>
Ollama怎么启动.gguf 大模型
查看>>
ollama本地部署DeepSeek(Window图文说明)
查看>>
ollama运行多模态模型如何进行api测试?
查看>>
OMG,此神器可一次定一周的外卖
查看>>
Omi 多端开发之 - omip 适配 h5 原理揭秘
查看>>
On Error GOTO的好处
查看>>
onclick事件的基本操作
查看>>
oncopy和onpaste
查看>>
onCreate中的savedInstanceState作用
查看>>
onCreate()方法中的参数Bundle savedInstanceState 的意义用法
查看>>
One good websit for c#
查看>>
One-Shot学习/一次学习(One-shot learning)
查看>>
OneASP 安全公开课,深圳站, Come Here, Feel Safe!
查看>>
OneBlog Shiro 反序列化漏洞复现
查看>>
oneM2M
查看>>
Oneplus5重装攻略
查看>>
one_day_one--mkdir
查看>>